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Abstract

In this paper, we compute the characteristic polynomial of a graph bundle when its volt-
ages lie in a dihedral group, as the first attempt to compute the characteristic polynomial
of a graph bundle (also, of a graph covering) having voltages in a nonabelian group. As a
result, we compute the characteristic polynomial of a graph bundle having a circulant graph
as a fibre. It is applied for the characteristic polynomials of a discrete torus and a discrete
Klein bottle. © 2001 Elsevier Science Inc. All rights reserved.
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1. The adjacency matrix of a graph bundle

Let G be a finite simple connected graph with vertex setV (G) and edge setE(G).
Let �G denote the digraph obtained fromG by replacing each edgee of G with a pair
of oppositely directed edges, saye+ ande−. We denote the set of directed edges of
�G by E( �G). By e−1, we mean the reverse edge to an edgee ∈ E( �G). We denote the
directed edgee of �G by uv if the initial and the terminal vertices ofe areu andv,
respectively. By|X|, we denote the cardinality of a finite setX.
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For a finite group�, a �-voltage assignment on G is a functionφ : E( �G) → �
such thatφ(e−1) = φ(e)−1 for all e ∈ E( �G). We denote the set of all�-voltage
assignments onG by C1(G; �). Let F be another finite graph and letφ ∈ C1(G;
Aut(F )), where Aut(F ) is the automorphism group ofF. Now, we construct a graph
G ×φ F with the vertex setV (G ×φ F ) = V (G) × V (F), and two vertices(u1, v1)

and (u2, v2) are adjacent inG ×φ F if either u1u2 ∈ E( �G) and v2 = φ(u1u2)v1
or u1 = u2 and v1v2 ∈ E(F) (see [7,10]). We callG ×φ F the F-bundle over G
associated with φ (or, simply agraph bundle) and the first coordinate projection
induces thebundle projection pφ : G ×φ F → G. The graphsG andF are called the
base and thefibre of the graph bundleG ×φ F , respectively. Note that the mappφ

maps vertices to vertices, but an image of an edge can be either an edge or a vertex. If
F = Kn, the complement of the complete graphKn of n vertices, then an F-bundle
overG is just ann-fold graph covering overG. If φ(e) is the identity of Aut(F )for
all e ∈ E( �G), thenG ×φ F is just the cartesian product ofG andF.

Let φ be an Aut(F )-voltage assignment onG. For eachγ ∈ Aut(F ), let �G(φ,γ )

denote the spanning subgraph of the digraph�G whose directed edge set isφ−1(γ ),
so that the digraph�G is the edge-disjoint union of spanning subgraphs�G(φ,γ ), γ ∈
Aut(F ). Let V (G) = {u1, u2, . . . , um} andV (F) = {v1, v2, . . . , vn}. Let P(γ ) de-
note then × n permutation matrix associated withγ ∈ Aut(F ) corresponding to the
action of Aut(F )onV (F): its (i, j)-entryP(γ )ij = 1 if γ (vi) = vj andP(γ )ij = 0
otherwise. Then for anyγ, δ ∈ Aut(F ), P (δγ ) = P(γ )P (δ). The tensor product of
matricesA ⊗ B is considered as the matrixB having the elementbij replaced by
the matrixAbij . Kwak and Lee[8] expressed the adjacency matrixA(G ×φ F ) of a
graph bundleG ×φ F as follows.

Theorem 1.

A(G ×φ F ) =

 ∑

γ∈Aut(F )

A( �G(φ,γ )) ⊗ P(γ )


 + Im ⊗ A(F),

where P(γ ) is the n × n permutation matrix associated with γ corresponding to the
action of Aut(F ) on V (F), and Im is the identity matrix of order m = |V (G)|.

Schwenk[11] studied relations between the characteristic polynomials of some
related graphs. Chae et al.[2] computed the characteristic polynomials ofK2 (or
K2)-bundles over a graph. Kwak and Lee[8] obtained a formula for the character-
istic polynomial of a graph bundle when its voltages lie in an abelian group. Miz-
uno and Sato[9] established an explicit decomposition formula for the characteristic
polynomial of a regular covering ofG. In this paper, we compute the characteristic
polynomial of a graph bundle when its voltages lie in a dihedral group, as the first
attempt to compute the characteristic polynomial of a graph bundle having voltages
in a nonabelian group.
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In Section 2, we give a characterization of a circulant graph: a graph havingn
vertices is circulant if and only if its automorphism group contains a dihedral sub-
group of order 2nwhich acts vertex-transitively. In Section 3, we construct a block
diagonal matrix which is similar to the adjacent matrix of the graph bundleG ×φ F

to give an easy computation of its characteristic polynomial. Also, we construct some
weighted digraphs so that their adjacency matrices are the same as those of blocks
of the similar form of the adjacency matrixA(G ×φ F ), from which we compute
the characteristic polynomial of the graph bundleG ×φ F in Section 4. Finally, we
derive formulas for the characteristic polynomials of a discrete torus and a discrete
Klein bottle. In fact, we do it for some generalized forms of them in Section 5.

2. Circulant graphs

An n × n matrix A is circulant if its entries satisfyAi,j = Ai+1,j+1 for all i, j .
Clearly, any circulant matrix is determined by its first row. Acirculant graph is a
graph whose vertices can be ordered so that its adjacency matrix is circulant. In this
section, we show that for any circulant graphF of n vertices, its automorphism group
Aut(F ) contains a subgroup isomorphic to the dihedral groupDn.

Let Sn denote the symmetric group onn elements, say 1, 2, . . . , n. Let a = (1 2
· · · n − 1 n) be ann-cycle and let

b =
{
(1 n) (2 n − 1) · · · ( n−1

2
n+3

2 ) ( n+1
2 ) if n is odd,

(1 n) (2 n − 1) · · · ( n2
n+2

2 ) if n is even

be a permutation in the symmetric groupSn. Note that the permutationsa and b
generate the dihedral subgroupDn of Sn, where

Dn=
〈
a, b

∣∣∣ an = 1 = b2, ab = ba−1
〉

=
{
1, a, . . . , an−1, b, ba, . . . , ban−1

}
,

and their permutation matrices are

P(a) =




0 1 0
0 0 1
...

...
...

0 0 1
1 0 0


 and P(b) =




0 1
1

·
·

·
1 0



.

Let µ = exp(2�i/n) and letxk = [1 µk µ2k · · · µ(n−1)k]T be a (column) vec-
tor in the complexn-spaceCn. Then 1, µ1, . . . , µn−1 are distinct eigenvalues of the
permutation matrixP(a) and for eachk = 0,1, . . . , n− 1, xk is an eigenvector of
P(a) belonging to the eigenvalueµk.
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Next two lemmas are elementary exercises.

Lemma 1. For an n × n matrix A, (P (a)A)i,j = Ai+1,j, (AP (a))i,j = Ai,j−1,

(P (b)A)i,j = An−i+1,j and (AP (b))i,j = Ai,n−j+1 for all i, j, where Ai,j denotes
the (i, j)-entry of the matrix A and all subscripts are reduced modulo n.

Lemma 2. For any k = 0,1, . . . , n− 1, the permutation matrix P(ak) has eigen-
vectors x0, x1, . . . , xn−1 belonging to n (not necessarily distinct) eigenvalues 1, µk,

. . . , µ(n−1)k, respectively.

Lemma 3. For any k = 0,1, . . . , n− 1, P (b)xk is an eigenvector of P(a) belong-
ing to an eigenvalue µn−k .

Proof. Clear, becauseP(a)P (b)xk = P(ba)xk = P(a−1b)xk = P(b)P (a)−1xk =
P(b)(µn−kxk) = µn−kP (b)xk. �

Theorem 2. The following statements are equivalent for a graph F of n vertices:
(1) F is circulant.
(2) The automorphism group Aut(F ) contains a dihedral subgroup of order 2n

which acts on F vertex-transitively.
(3) The automorphism group Aut(F ) contains a cyclic subgroup of order n which

acts on F vertex-transitively.

Proof. (1) ⇔ (3) is clear by definition, and(2) ⇒ (3) is trivial. (3) ⇒ (2) comes
from the symmetry of the adjacency matrix.�

For example, the cycleCn, the complete graphKn and its complementKn are
clearly circulant graphs. In fact, their automorphism groups Aut(Cn) = Dn and
Aut(Kn) = Aut(Kn) = Sn contains a dihedral subgroupDn, which acts vertex-tran-
sitively.

Notes.
(i) Without loss of any generality, one can assume that the automorphism group

Aut(F ) of any circulant graphF of n vertices contains the dihedral subgroup
Dn generated by the permutationsa andb.

(ii) In the statements (2) and (3) in Theorem 2, the condition of vertex-transitivity
is necessary. For example, ifF is the complete bipartite graphK3,7, Aut(F )

contains a subgroup which is isomorphic to the symmetric groupS7. And, the
groupS7 contains a subgroup which is isomorphic to the dihedral groupD10,
because the elementsa = (1 2)(3 4 5 6 7) andb = (1 2)(3 7)(4 6) of S7
generate the dihedral groupD10. Of course, Aut(F )also contains a subgroup
which is isomorphic to the cyclic groupZ10. But,F = K3,7 is not circulant.
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3. Similarity of an adjacency matrix

From now on, we assume thatF hasn vertices 1, 2, . . . , n and its automorphism
group Aut(F ) contains the dihedral subgroupDn = 〈a, b〉. And, we are interested
in the bundleG ×φ F , whereφ ∈ C1(G; Aut(F )) has values only in the dihedral
subgroupDn, i.e., the image ofφ is contained in the subgroupDn. We say that such
a voltage assignmentφ is aDn-valued voltage assignment onG.

For anyDn-valued voltage assignmentφ on G, we aim to find a matrix of block
form which is similar to the adjacency matrixA(G ×φ F ) of the graph bundle
G ×φ F .

Theorem 3. Let F be a graph having n vertices such that Aut(F ) contains a dihe-
dral subgroup Dn. Then, for any Dn-valued voltage assignment φ on G, the adja-
cency matrix of the graph bundle G ×φ F is similar to



(
A(G) + λ(F,0)Im

) ⊕



1
2 (n−1)⊕
t=1

(At + λ(F,t)I2m)


 if n is odd,

(
A(G) + λ(F,0)Im

) ⊕



1
2 (n−2)⊕
t=1

(At + λ(F,t)I2m)




⊕
(
n−1∑
k=0

(
(−1)kA( �G(φ,ak)) + (−1)k+1A( �G(φ,bak))

)

+ λ
(F, 1

2n)
Im

)
if n is even,

where

At =
n−1∑
k=0


 µtkA( �G(φ,ak)) µtkA( �G(φ,bak))

µ(n−t)kA( �G(φ,bak)) µ(n−t)kA( �G(φ,ak))




is of order 2m.

Proof. As the same notations given in Section 2, letµ = exp(2�i/n) and xk =
[1 µk µ2k · · · µ(n−1)k]T for k = 0,1, . . . , n− 1. Recall that 1, µ1, . . . , µn−1 are
distinct eigenvalues of the permutation matrixP(a) and for anyk = 0,1, . . . , n− 1,
xk is an eigenvector ofP(a) belonging to the eigenvalueµk. Let

M =




[
x0 x1 P(b)x1 x2 P(b)x2 · · · x 1

2 (n−1) P (b)x 1
2 (n−1)

]
if n is odd,[

x0 x1 P(b)x1 x2 P(b)x2 · · · x 1
2 (n−2) P (b)x 1

2 (n−2) x 1
2n

]
if n is even.
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Then the matrixM is invertible of ordern because the column vectorsx0, x1, P (b)x1,
x2, P (b)x2, . . . of M are eigenvectors ofP(a) belonging to distinct eigenvalues
1, µ, µn−1, µ2, µn−2, . . . , respectively. For anyk = 0,1, . . . , n− 1, it follows from
Lemmas 2 and 3 that

M−1P(ak)M

=




Diag
[
1, µk, µ(n−1)k, . . . , µ

1
2 (n−1)k, µ

1
2 (n+1)k

]
if n is odd,

Diag
[
1, µk, µ(n−1)k, . . . , µ

1
2 (n−2)k, µ

1
2 (n+2)k, (−1)k

]
if n is even,

where

Diag
[
1, µk, µ(n−1)k, . . . , µ

1
2 (n−1)k, µ

1
2 (n+1)k

]
denotes the diagonal matrix with diagonal entries 1, µk, µ(n−1)k, . . . , µ

1
2 (n−1)k,

µ
1
2 (n+1)k.
First, let n be odd. Then

P(b)M=
[
x0 P(b)x1 x1 P(b)x2 x2 · · · P(b)x 1

2 (n−1) x 1
2 (n−1)

]
=M(1 ⊕ J2 ⊕ · · · ⊕ J2),

where

J2 =
[
0 1
1 0

]
.

Hence, we get

M−1P(bak)M

= M−1P(ak)P (b)M

= Diag
[
1, µk, µ(n−1)k, . . . , µ

1
2 (n−1)k, µ

1
2 (n+1)k

]1 ⊕



1
2 (n−1)⊕
t=1

J2






= 1 ⊕



1
2 (n−1)⊕
t=1

[
0 µtk

µ(n−t)k 0

] .

Moreover, the matricesI, P (a), . . . , P (an−1) andA(F) are simultaneously diagon-
alizable because they are all diagonalizable and commute each other. It is already
known that 1, µ, . . . , µn−1 are distinct eigenvalues of the permutation matrixP(a)

of multiplicity 1 for anyk = 0,1, . . . , n− 1. It implies that all eigenvectors ofP(a)

are those of A(F). Therefore,M−1A(F)M is also a diagonal matrix and the com-
mutativity A(F)P (b) = P(b)A(F ) implies that ifx is an eigenvector ofA(F) be-
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longing to an eigenvalueλ, thenP(b)x is also an eigenvector ofA(F) belonging
to the same eigenvalue. Therefore, fork = 1,2, . . . , 1

2(n − 1), xk andP(b)xk are
eigenvectors ofA(F) belonging to the same eigenvalue. Letλ(F,k) denote the eigen-
value ofA(F) to which the eigenvectorsxk andP(b)xk are belonging. Then

M−1A(F)M = Diag

[
λ(F,0), λ(F,1), λ(F,1), . . . , λ

(
F, 1

2 (n−1)
), λ(

F, 1
2 (n−1)

)] .

Now, by Theorem 1, the adjacency matrix of the graph bundleG ×φ F is

A(G ×φ F )=
(
n−1∑
k=0

A( �G(φ,ak)) ⊗ P(ak)

)
+

(
n−1∑
k=0

A( �G(φ,bak)) ⊗ P(bak)

)

+ Im ⊗ A(F),

which is similar to

(Im ⊗ M)−1A(G ×φ F )(Im ⊗ M)

=
n−1∑
k=0

{(
A( �G(φ,ak)) + A( �G(φ,bak))

)

⊕



1
2 (n−1)⊕
t=1


 µtkA( �G(φ,ak)) µtkA( �G(φ,bak))

µ(n−t)kA( �G(φ,bak)) µ(n−t)kA( �G(φ,ak))








+


(λ(F,0)Im) ⊕




1
2 (n−1)⊕
t=1

λ(F,t)I2m






= (
A(G) + λ(F,0)Im

) ⊕



1
2 (n−1)⊕
t=1

(At + λ(F,t)I2m)


 ,

where

At =
n−1∑
k=0


 µtkA( �G(φ,ak)) µtkA( �G(φ,bak))

µ(n−t)kA( �G(φ,bak)) µ(n−t)kA( �G(φ,ak))




is a 2m× 2mmatrix. Hence, ifn is odd, the adjacency matrixA(G ×φ F ) is similar
to the matrix of1

2(n + 1) blocks, the first block is of orderm and all others are of
order 2m.

Next, let n be even. Then for anyk = 0,1, . . . , n− 1,

M−1P(ak)M = 1 ⊕



1
2 (n−2)⊕
t=1

[
µtk 0
0 µ(n−t)k

] ⊕ (−1)k,
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M−1P(bak)M=M−1P(ak)P (b)M

=M−1P(ak)M(1 ⊕ J2 ⊕ · · · ⊕ J2 ⊕ (−1))

=1 ⊕



1
2 (n−2)⊕
t=1

[
0 µtk

µ(n−t)k 0

] ⊕ (−1)k+1,

and

M−1A(F)M = Diag

[
λ(F,0), λ(F,1), λ(F,1), . . . ,

λ(
F, 1

2 (n−2)
), λ(

F, 1
2 (n−2)

), λ(
F, 1

2n
)
]
.

Like as the case of oddn, one can have

(Im ⊗ M)−1A(G ×φ F )(Im ⊗ M)

= (
A(G) + λ(F,0)Im

) ⊕



1
2 (n−2)⊕
t=1

(At + λ(F,t)I2m)




⊕
(
n−1∑
k=0

(
(−1)kA( �G(φ,ak)) + (−1)k+1A( �G(φ,bak))

)
+ λ(

F, 1
2n

)Im
)
.

Hence, ifn is even, the adjacency matrixA(G ×φ F ) is similar to the matrix of
1
2(n + 2) blocks, in which the first and the last blocks are of orderm and all others
are of order 2m. �

Corollary 1. If F = Kn, then Aut(Kn) = Sn contains a dihedral subgroup Dn

which acts on Kn vertex-transitively. And, for any Dn-valued voltage assignment
φ on G, G ×φ Kn is just an n-fold covering over G and its adjacency matrix is
similar to



A(G) ⊕



1
2 (n−1)⊕
t=1

At


 if n is odd,

A(G) ⊕



1
2 (n−2)⊕
t=1

At




⊕
n−1∑
k=0

(
(−1)kA( �G(φ,ak) + (−1)k+1A( �G(φ,bak))

)
if n is even,
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where

At =
n−1∑
k=0


 µtkA( �G(φ,ak)) µtkA( �G(φ,bak))

µ(n−t)kA( �G(φ,bak)) µ(n−t)kA( �G(φ,ak))




is of order 2m.

As the last part of the section, we review how to find the eigenvalues of a circulant
graphF. Let F be a circulant graph havingn vertices and let its adjacency matrix
A(F) have[a1 a2 · · · an] as its first row under vertex ordering 1, 2, . . . , n. Let
µ = exp(2�i/n) as before. Then it is known [1] that the graphF is vertex transitive
and the eigenvalues ofF are

λt =
n∑

j=1

aiµ
(j−1)t, t = 0,1,2, . . . , n− 1,

which the eigenvectorxt = [1 µt µ2t · · · µ(n−1)t]T belongs to.
LetN(k) denote the set of vertices ofF adjacent to the vertexk. Then Fis regular

of degree|N(k)| and λ(F,0) = |N(k)|. And, a vertexi is contained inN(n) if
and only if a vertexn − i is contained inN(n) for any i = 1,2, . . . , n− 1, be-
causeA(F)n,i = A(F)n−i,n = A(F)n,n−i . Therefore, for anyt = 1, . . . , �1

2n�, xt =
[1 µt µ2t · · · µ(n−1)t]T is an eigenvector ofF belonging to an eigenvalue ofλ(F,t)

and

λ(F,t) =
∑

j∈N(1)

µ(j−1)t =
∑

j∈N(n)

µjt

=




∑
j∈N(n),j�� 1

2(n−1)�
(µjt + µ(n−j)t ) + (−1)t

=
∑

j∈N(n),j�� 1
2(n−1)�

2 cos2j t�
n

+ (−1)t if n is even and1
2n ∈ N(n),

∑
j∈N(n),j�� 1

2(n−1)�
(µjt + µ(n−j)t )

=
∑

j∈N(n),j�� 1
2(n−1)�

2 cos2j t�
n

otherwise.

For example, ifn is even, then the eigenvalues of the cycleCn are λ(Cn,0) =
2, λ(

Cn,
1
2n
) = −2 of multiplicity 1 and 2 cos2�

n
, 2 cos4�

n
, . . . ,2 cos(n−2)�

n
of multi-

plicity 2. If n is odd, then the eigenvalues of the cycleCn areλ(Cn,0) = 2 of multi-
plicity 1 and 2 cos2�

n
, 2 cos4�

n
, . . . ,2 cos(n−1)�

n
of multiplicity 2.
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4. Characteristic polynomials

The characteristic polynomial of a graphG is, by definition, the characteristic
polynomial det(λI − A(G)) of its adjacency matrixA(G). We denote the character-
istic polynomial ofG by �(G; λ). We also denote the characteristic polynomial of
matrix A by �(A; λ). A zero of�(G; λ) is an eigenvalue ofG.

The following comes from Theorem 3.

Theorem 4. Let F be a graph having n vertices such that Aut(F ) contains a dihe-
dral subgroup Dn. Then for any Dn-valued voltage assignment φ on G, the charac-
teristic polynomial �(G ×φ F ; λ) of the graph bundle G ×φ F is

�(G ×φ F ; λ)

=




�(G; λ − λ(F,0)) × ∏ 1
2 (n−1)
t=1 �(At ; λ − λ(F,t)) if n is odd,

�(G; λ − λ(F,0)) × ∏ 1
2 (n−2)
t=1 �

(
At ; λ − λ(F,t))

)
× �

(∑n−1
k=0

(
(−1)kA( �G(φ,ak))

+ (−1)k+1 A( �G(φ,bak))
)

; λ − λ(
F,

1
2n

)) if n is even,

where

At =
n−1∑
k=0


 µtkA( �G(φ,ak)) µtkA( �G(φ,bak))

µ(n−t)kA( �G(φ,bak)) µ(n−t)kA( �G(φ,ak))




is of order 2m.

In the equation of the characteristic polynomial�(G ×φ F ; λ) given in Theo-
rem 4, the term�(G; λ − λ(F,0)) is completely determined by the base graphG.
But, the computations of all other terms might be complicate. Hence, to find more
convenient formulas for their computations, we construct some weighted digraphs
having the same characteristic polynomials as the remaining terms in the equation.

Let C denote the field of complex numbers, and letD be a digraph. Aweight-
ed digraph is a pairDω = (D, ω), where ω: E(D) → C is a function on the set
E(D) of directed edges ofD. We call D the underlying digraph of Dω andω the
weight function of Dω. Moreover, ifω(e−1) = ω(e), the complex conjugate ofω(e),
for each edgee ∈ E(D), then we sayω is a symmetric weight function andDω a
symmetrically weighted digraph.

Given any weighted digraphDω, the adjacency matrixA(Dω) = (aij ) of Dω is
the square matrix of order|V (D)| defined by

aij =
{
ω(vivj ) if vivj ∈ E(D),

0 otherwise,
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and its characteristic polynomial is that of its adjacency matrix. We shall denote the
characteristic polynomial ofDω by �(Dω; λ).

For anyDn-valued voltage assignmentφ on G, define a new Z2-voltage assign-
mentψφ on G by

ψφ(e) =
{

1 if φ(e) = ak for somek = 0,1, . . . , n− 1,
−1 if φ(e) = bak for somek = 0,1, . . . , n− 1

for e = uiuj ∈ E( �G). Then the voltage assignmentψφ derives a double covering
G ×ψφ Z2 overG as follows:

V (G ×ψφ Z2) = {(ui, g) | ui ∈ V (G), g ∈ Z2},
E(G ×ψφ Z2) = {(ui, g)(uj , ψφ(uiuj )g) | uiuj ∈ E( �G), g ∈ Z2}.

We denote the double coveringG ×ψφ Z2 simply by Gψφ . Now, for anyDn-val-
ued voltage assignmentφ on G and for anyt = 1, . . . , �1

2(n − 1)�, let ωt(φ) :
E( �Gψφ) → C be the weight function on the double covering�Gψφ defined by

ωt(φ)(e) =
{
µtk if g = 1, and(φ(uiuj ) = ak or bak),
µ(n−t)k if g = −1, and(φ(uiuj ) = ak or bak),

wheree = (ui, g)(uj , ψφ(uiuj )g) ∈ E( �Gψφ) andµ = exp(2�i/n).
Define another weight functionω−1(φ) : E( �G) → C on the digraph�G by

ω−1(φ)(uiuj ) =
{
(−1)k if φ(uiuj ) = ak,

(−1)k+1 if φ(uiuj ) = bak

for uiuj ∈ E( �G).
The following lemma shows the adjacency matrices of these two weighted di-

graphs.

Lemma 4.
(1) For any t = 1,2, . . . , �1

2(n − 1)�,
A( �Gψφ

ωt (φ)
) = At

as 2m× 2mmatrices under vertex order (u1, 1), (u2, 1), . . . , (um, 1), (u1,−1),
(u2,−1), . . . , (um,−1).

(2) When n is even,

A( �Gω−1(φ)) =
n−1∑
k=0

(
(−1)kA( �G(φ,ak)) + (−1)k+1A( �G(φ,bak))

)
as m × m matrices.

Proof. Note that both matrices in Eq.(1) are of order 2m, while the matrices in(2)
are of orderm. We prove the lemma by comparing entries of those matrices. For any
t = 1,2, . . . , �1

2(n − 1)� and for anyi, j = 1,2, . . . , m,

Case 1. If uiuj ∈ E( �G) andφ(uiuj ) = ak for somek, then
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[A( �Gψφ

ωt (φ)
)]i,j = µtk = [At ]i,j ,

[A( �Gψφ

ωt (φ)
)]m+i,m+j = µ(n−t)k = [At ]m+i,m+j ,

[A( �Gψφ

ωt (φ)
)]i,m+j = 0 = [At ]i,m+j ,

[A( �Gψφ

ωt (φ)
)]m+i,j = 0 = [At ]m+i,j ,

[A( �Gω−1(φ))]i,j = (−1)k

=
[
n−1∑
k=0

(
(−1)kA( �G(φ,ak)) + (−1)k+1A( �G(φ,bak))

)]
i,j

.

Case 2. If uiuj ∈ E( �G) andφ(uiuj ) = bak for somek, then

[A( �Gψφ

ωt (φ)
)]i,m+j = µtk = [At ]i,m+j ,

[A( �Gψφ

ωt (φ)
)]m+i,j = µ(n−t)k = [At ]m+i,j ,

[A( �Gψφ

ωt (φ)
)]i,j = 0 = [At ]i,j ,

[A( �Gψφ

ωt (φ)
)]m+i,m+j = 0 = [At ]m+i,m+j ,

[A( �Gω−1(φ))]i,j = (−1)k+1

=
[
n−1∑
k=0

(
(−1)kA( �G(φ,ak)) + (−1)k+1A( �G(φ,bak))

)]
i,j

.

Case 3. If uiuj /∈ E( �G), then

[A( �Gψφ

ωt (φ)
)]i,j = 0 = [At ]i,j ,

[A( �Gψφ

ωt (φ)
)]i,m+j = 0 = [At ]i,m+j ,

[A( �Gψφ

ωt (φ)
)]m+i,j = 0 = [At ]m+i,j ,

[A( �Gψφ

ωt (φ)
)]m+i,m+j = 0 = [At ]m+i,m+j ,

[A( �Gω−1(φ))]i,j = 0

=
[
n−1∑
k=0

(
(−1)kA( �G(φ,ak)) + (−1)k+1A( �G(φ,bak))

)]
i,j

.

It completes the proof. �

Now, the characteristic polynomial of the graph bundleG ×φ F over G can be
derived from Lemma 4 and Theorem 4 as follows.
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Theorem 5. Let F be a graph having n vertices such that Aut(F ) contains a dihe-
dral subgroup Dn. Then, for any Dn-valued voltage assignment φ on G, the charac-
teristic polynomial �(G ×φ F ; λ) of the graph bundle G ×φ F is

�(G ×φ F ; λ) =




�(G; λ − λ(F,0))

× ∏ 1
2 (n−1)
t=1 �

( �Gψφ

ωt (φ)
; λ − λ(F,t)

)
if n is odd,

�(G; λ − λ(F,0))

× ∏ 1
2 (n−2)
t=1 �

( �Gψφ

ωt (φ)
; λ − λ(F,t)

)
× �

( �Gω−1(φ); λ − λ
(F, 1

2n)

)
if n is even.

If F = Kn, then for anyDn-valued voltage assignmentφ on G, the graph bundle
G ×φ Kn is just ann-fold covering overG. Note that the following corollary is in-
dependent from the characteristic polynomial of a regular covering ofG obtained by
Mizuno and Sato [9, Theorem 1], when the voltage group is a dihedral group.

Corollary 2. If F = Kn, then for any Dn-valued voltage assignment φ on G, the
characteristic polynomial of a graph covering G ×φ Kn is

�(G ×φ Kn; λ) =




�(G; λ) × ∏ 1
2 (n−1)
t=1 �( �Gψφ

ωt (φ)
; λ) if n is odd,

�(G; λ) × ∏ 1
2 (n−2)
t=1 �( �Gψφ

ωt (φ)
; λ)

× �( �Gω−1(φ); λ) if n is even.

Next, we compute the characteristic polynomials�( �Gψφ

ωt (φ)
; λ) of the weighted

digraph �Gψφ

ωt (φ)
for any t = 1,2, . . . , �1

2(n − 1)� and�( �Gω−1(φ); λ) of the weighted

digraph �Gω−1(φ). From now on, the conjugate of a complex numberµ is also denoted
by [µ]−.

Lemma 5.
(1) For any t = 1,2, . . . , �1

2(n − 1)� the weighted digraph �Gψφ

ωt (φ)
= ( �Gψφ , ωt (φ))

is symmetrically weighted, and |ωt(φ)(e)| = 1 for all e ∈ E( �Gψφ).
(2) If n is even, then �Gω−1(φ) is symmetrically weighted and |ω−1(φ)(e)| = 1 for all

e ∈ E( �Gω−1(φ)).

Proof. (1) Let e = (ui, g)(uj , ψφ(uiuj )g) be an edge inE( �Gψφ). Then φ(uiuj )

is eitherak or bak for somek. First, letφ(uiuj ) = ak for somek. Thenφ(ujui) =
an−k, ψφ(uiuj ) = 1 and ψφ(ujui) = 1. Hence, for anyt = 1,2, . . . , �1

2(n − 1)�,
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ωt(φ)((ui, 1)(uj , 1)) = µtk = µt(n−k) = [ωt(φ)((uj , 1)(ui, 1))]−,
and

ωt(φ)((ui,−1)(uj ,−1))=µ(n−t)k = µ(n−t)(n−k)

=[ωt(φ)((uj ,−1)(ui,−1))]−.
Secondly, letφ(uiuj ) = bak for somek. Then φ(ujui) = bak (because(bak)−1

= bak), ψφ(uiuj ) = −1 and ψφ(ujui) = −1. Therefore, for anyt = 1,2, . . . , �1
2

(n − 1)�,

ωt(φ)((ui, 1)(uj ,−1)) = µtk = µ(n−t)k = [ωt(φ)((uj ,−1)(ui, 1))]−,
and

ωt(φ)((ui,−1)(uj , 1)) = µ(n−t)k = µtk = [ωt(φ)((uj , 1)(ui,−1))]−.
Hence, the weighted digraph�Gψφ

ωt (φ)
= ( �Gψφ , ωt (φ)) is symmetrically weighted for

any t = 1,2, . . . , �1
2(n − 1)�. And |ωt(φ)(e)| = 1 for all e ∈ E( �Gψφ) because|µi |

= 1 for all i ∈ Z.

(2) Letn be even. Fore = uiuj ∈ E( �G), if φ(uiuj ) = ak for somek thenφ(ujui)
= an−k, which givesω−1(φ)(e

−1) = (−1)n−k = (−1)k = ω−1(φ)(e). And, if φ(ui
uj ) = bak for somek thenφ(ujui) = bak, which givesω−1(φ)(e

−1) = (−1)k+1

= ω−1(φ)(e). Hence, the weighted digraph�Gω−1(φ) is symmetrically weighted and
|ω−1(φ)(e)| = 1 for all e ∈ E( �G). �

A digraph �D is said to belinear if each indegree and each outdegree is equal to
1. For a weighted digraph�Dω, we write

�( �Dω; λ) = λ|V ( �D)| + c1( �Dω)λ
|V ( �D)|−1 + · · · + c|V ( �D)|( �Dω).

Let Lj ( �D) denote the set of all linear subdigraphsL of �D with exactly j vertices,
andκ(L) the number of components of a subdigraphL. An undirected graphS is
called abasic figure if each of its components is either a cycle or the complete graph
K2. For an undirected graphG, let Bj (G) denote the set of all subgraphs ofG which
are basic figures withj vertices,κ(S) the number of components of a subgraphS,
andC(S) the set of cycles contained inS.

Kwak and Lee found the characteristic polynomial of a symmetrically weighted
digraph as follows.

Theorem 6 [8, Theorem 5].If �Gω is a symmetrically weighted digraph, then

cj ( �Gω) =
∑

S∈Bj (G)

(−1)κ(S)
∏

e∈E(K2(S))

|ω(e+)|2
∏

C∈C(S)
(ω(C+) + ω(C+)),

where ω(C+) = ∏
e∈E(C+)ω(e).
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Now, one can calculate the characteristic polynomial�( �Gψφ

ωt (φ)
; λ) from Lemma 5

and Theorem 6.

Theorem 7. Let F be a graph having n vertices such that Aut(F ) contains a di-
hedral subgroup Dn. Then, for any Dn-valued voltage assignment φ on a graph G
having m vertices, we have

�( �Gψφ

ωt (φ)
; λ) = λ2m +

2m∑
j=1

( ∑
S∈Bj (G

ψφ )

(−1)κ(S)
∏

C∈C(S)

(
ωt(φ)(C

+)

+ (
ωt(φ)(C

+)
)−1

))
λ2m−j . (1)

In particular, if φ(e) is of order 2 for each e ∈ E( �Gψφ), then

�( �Gψφ

ωt (φ)
; λ) = λ2m +

2m∑
j=1


 ∑

S∈Bj (G
ψφ )

(−1)κ(S)2|C(S)|

×
∏

C∈C(S)
ωt (φ)(C

+)


 λ2m−j .

�( �Gω−1(φ); λ)=λm +
m∑

j=1

( ∑
S∈Bj (G)

(−1)κ(S)
∏

C∈C(S)

(
ω−1(φ)(C

+)

+ (
ω−1(φ)(C

+)
)−1

))
λm−j

=λm +
m∑

j=1


 ∑

S∈Bj (G)

(−1)κ(S)2|C(S)| ∏
C∈C(S)

ω−1(φ)(C
+)


 λm−j .

(2)

5. Applications

The cycleCn is a typical example of a graph whose automorphism group is the
dihedral groupDn. Therefore, for anyCn-bundle over a graphG one can apply our
method to compute its characteristic polynomial. In particular, one can compute the
characteristic polynomials of a discrete torus and a discrete Klein bottle.

Lemma 6. Suppose that ( �Cm;ω) is a symmetrically weighted digraph and for all
e ∈ E( �Cm), |ω(e)| = 1. Let V (Cm) = {u1, u2, . . . , um} and ω(C+

m) = ∏m−1
i=1 ω(ui
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ui+1) ×ω(umu1). Then

�(( �Cm;ω); λ) = �(Cm; λ) + 2 − (ω(C+
m) + ω(C+

m)−1).

In particular, if ω(C+
m) is a real number, then �(( �Cm;ω); λ) = �(Cm; λ) + 2 −

2ω(C+
m), and if ω(C+

m) is a purely imaginary number, then �(( �Cm;ω); λ) = �(Cm;
λ) + 2.

Proof. A basic figure ofCm containing a cycle is onlyCm itself. Therefore, by
Theorem 6,

�(( �Cm,ω); λ)=λm +
m∑

j=1

( ∑
S∈Bj (Cm)

(−1)κ(S)
∏

C∈C(S)

(
ω(C+)

+ (
ω(C+)

)−1
))

λm−j

=λm +
m∑

j=1


 ∑

S∈Bj (G),S �=Cm

(−1)κ(S)


 λm−j

− (ω(C+
m) + ω(C+

m)−1).

And, by Sachs Theorem (see [3], Section 1.4) for an undirected graph,

�(Cm; λ)=λm +
m∑

j=1


 ∑

S∈Bj (Cm)

(−1)κ(S)2|C(S)|

 λm−j

=λm +
m∑

j=1


 ∑

S∈Bj (G),S �=Cm

(−1)κ(S)


 λm−j − 2.

Therefore, we get�(( �Cm,ω); λ) = �(Cm; λ) + 2 − (ω(C+
m) + ω(C+

m)−1). �

From Theorem 5 and Lemma 6, we can have:

Theorem 8. For any Aut(Cn)-voltage assignment φ on the cycle Cm, the charac-
teristic polynomial of the bundle Cm ×φ Cn is

�(Cm ×φ Cn; λ) =




�(Cm; λ − 2)× ∏ 1
2 (n−1)
t=1 �

( �Cm
ψφ

ωt (φ)
; λ − 2 cos2t�

n

)
if n is odd,

�(Cm; λ − 2)× ∏ 1
2 (n−2)
t=1 �

( �Cm
ψφ

ωt (φ)
; λ − 2 cos2t�

n

)
× (

�(Cm; λ + 2)+ 2 − 2(ω−1(φ)(C
+
m))

)
if n is even.
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A double covering over the cycleCm is either a disjoint two copies ofCm or the
cycleC2m of length 2m. In either case, the characteristic polynomial

�

(
�Cm

ψφ

ωt (φ)
; λ − 2 cos

2t�

n

)
in Theorem 8 can be computed by using Lemma 6.

As an example, consider a bundleC10 ×φ C8, where φ is Aut(C8)-voltage as-
signment on the cycleC10. Let V (C8) = {1,2, . . . ,8}, and let a= (1 2 · · · 8),
b = (1 8)(2 7)(3 6)(4 5) be the permutations in the symmetric groupS8. Then
Aut(C8) = 〈a, b〉 = D8, the dihedral group. Let theD8-voltage assignmentφ on the
cycleC10 be defined as in Fig. 1. Then the net voltage of directed cycleC+

10 = u1u2·
u2u3 · · ·u9u10 · u10u1 is φ(u10u1) × φ(u9u10) × · · · ×φ(u1u2) = a4 × a2 × ba2×
a × b = a3. Therefore, the double coveringC

ψφ

10 over the cycleC10 is a disjoint
two copies ofC10 by the definition of the voltage assignmentψφ. And, for each

component of the digraph�C10
ψφ , there exist exactly two linear subdigraphs of�C10

ψφ

which are isomorphic to the directed cycleC+
10. Let L1 andL2 be such two linear

subdigraphs of a component of�C10
ψφ , andL3 andL4 be those of the other com-

ponent. ThenL−1
1 = L2, L−1

3 = L4, and for anyt = 1,2,3, one ofωt(φ)(L1) and
ωt(φ)(L2) is exp(6t�i

8 ) and the other is exp(−6t�i
8 ). The same thing holds

for ωt(φ)(L3) andωt(φ)(L4). Therefore,ωt(φ)(L1) + ωt(φ)(L1)
−1 =ωt(φ)(L3) +

ωt(φ)(L3)
−1 = 2 cos6t�

8 and ω−1(φ)(C) = −1, by the definitions of the weight
functionsωt(φ). Hence, we get by Lemma 6

�(C10 ×φ C8; λ)=�(C10; λ − 2)×
3∏

t=1

�

(
�C10

ψφ

ωt (φ)
; λ − 2 cos

2t�

8

)

× (�(C10; λ + 2)+ 2 − 2(ω−1(φ)(C)))

=�(C10; λ − 2)×
3∏

t=1

(
�

(
C10; λ − 2 cos

2t�

8

)

+ 2 − 2 cos
6t�

8

)2

× (�(C10; λ + 2)+ 4) .

Fig. 1. A cycleC10 with D8-voltage assignment.
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In general, we can get:

Corollary 3. A bundle Cm ×φ Cn over Cm having the net voltage φ(C+
m) = ak for

some k = 0,1, . . . , n− 1 is a discrete torus. And, if n is even, then its characteristic
polynomial is

�(Cm ×φ Cn; λ)

=




�(Cm; λ − 2)× ∏ 1
2 (n−2)
t=1

(
�
(
Cm; λ − 2 cos2t�

n

)
+ 2 − 2 cos2kt�

n

)2 × (�(Cm; λ + 2)+ 4) if k is odd,

�(Cm; λ − 2)× ∏ 1
2 (n−2)
t=1

(
�
(
Cm; λ − 2 cos2t�

n

)
+ 2 − 2 cos2kt�

n

)2 × �(Cm; λ + 2) if k is even.

If n is odd,

�(Cm ×φ Cn; λ)=�(Cm; λ − 2)×
1
2 (n−1)∏
t=1

(
�

(
Cm; λ − 2 cos

2t�

n

)

+ 2 − 2 cos
2kt�

n

)2

.

If a bundleCm ×φ Cn has the net voltageφ(C+
m) = bak for somek = 0,1, . . . ,

n − 1, then the double coveringC
ψφ
m overCm is the cycleC2m. And, for anyt =

1,2, . . . , �1
2(n − 1)�, ωt(φ)(C

+
2m) = 1, because for any edgeij ∈ E( �Cm), the edge

(i, 1)(j, ψφ(ij)) ∈ C+
2m if and only if the edge(i,−1)(j,−ψφ(ij)) ∈ C+

2m and
ωt(φ)(i, 1)(j, ψφ(ij)) × ωt(φ)(i,−1)(j,−ψφ(ij)) = 1 by the definition of weight
functionsωt(φ). Therefore, a similar computation gives:

Corollary 4. A bundle Cm ×φ Cn having the net voltage φ(C+
m) = bak for some

k = 0,1, . . . , n− 1 is a discrete Klein bottle. And, if n is even, then its characteristic
polynomial is

�(Cm ×φ Cn; λ)

=




�(Cm; λ − 2)× ∏ 1
2 (n−2)
t=1 �

(
C2m; λ − 2 cos2t�

n

)
× �(Cm; λ + 2) if k is odd,

�(Cm; λ − 2)× ∏ 1
2 (n−2)
t=1 �

(
C2m; λ − 2 cos2t�

n

)
× (�(Cm; λ + 2)+ 4) if k is even.
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If n is odd,

�(Cm ×φ Cn; λ) = �(Cm; λ − 2)×
1
2 (n−1)∏
t=1

�

(
C2m; λ − 2 cos

2t�

n

)
.

For example, if a bundleC10 ×φ C8 has the net voltageφ(C+
10) = ba3, then the

double coveringC
ψφ

10 overC10 is the cycleC20. And, for anyt = 1,2,3, ωt (φ)(C
+
20)

= 1, andω−1(φ)(C
+
10) = (−1)4 = 1. Therefore, by Lemma 6,

�(C10 ×φ C8; λ)=�(C10; λ − 2)×
3∏

t=1

�

(
�C10

ψφ

ωt (φ)
; λ − 2 cos

2t�

8

)

× (�(C10; λ + 2)+ 2 − 2(ω−1(φ)(C)))

=�(C10; λ − 2)×
3∏

t=1

�

(
C20; λ − 2 cos

2t�

8

)

× �(C10; λ + 2).

And, the roots of�(C10; λ − 2) = 0 are 0, 4 of multiplicity 1 and 2 cos�5 + 2,
2 cos2�

5 + 2,2 cos3�
5 + 2,2 cos4�

5 + 2 of multiplicity 2. The roots of�(C20; λ −
2 cos2�

8 ) = �(C20; λ − √
2) = 0 are 2+ √

2,−2 + √
2 of multiplicity 1 and

2 cos �
10 + √

2,2 cos2�
10 + √

2, . . . ,2 cos9�
10 + √

2 of multiplicity 2. The roots of
�(C20; λ − 2 cos4�

8 ) = �(C20; λ) = 0 are 2,−2 of multiplicity 1 and 2 cos�
10,

2 cos2�
10, . . . ,2 cos9�

10 of multiplicity 2. The roots of�(C20; λ − 2 cos6�
8 ) = �(C20;

λ + √
2) = 0 are 2− √

2,−2 − √
2 of multiplicity 1 and 2 cos�

10 − √
2,2 cos2�

10 −√
2, . . . ,2 cos9�

10 − √
2 of multiplicity 2. And, the roots of�(C10; λ + 2) = 0 are

0,−4 of multiplicity 1 and 2 cos�5 − 2,2 cos2�
5 − 2,2 cos3�

5 − 2,2 cos4�
5 − 2 of

multiplicity 2. All of the above roots are the eigenvalues of the discrete Klein bottle
C10 ×φ C8.
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