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Abstract

In this paper, we compute the characteristic polynomial of a graph bundle when its volt-
ages lie in a dihedral group, as the first attempt to compute the characteristic polynomial
of a graph bundle (also, of a graph covering) having voltages in a nonabelian group. As a
result, we compute the characteristic polynomial of a graph bundle having a circulant graph
as a fibre. It is applied for the characteristic polynomials of a discrete torus and a discrete
Klein bottle. © 2001 Elsevier Science Inc. All rights reserved.
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1. Theadjacency matrix of a graph bundle

Let G be afinite simple connected graph with vertexiset) and edge sek (G).
Let G denote the digraph obtained fraghby replacing each edgeof G with a pair
of oppositely directed edges, say ande~. We denote the set of directed edges of
G by E(G). By e~1, we mean the reverse edge to an edgeE (G). We denote the
directed edge of G by uv if the initial and the terminal vertices @&areu andv,
respectively. By X|, we denote the cardinality of a finite S§t
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For a finite groupl”, a I'-voltage assignmenton G is a functiong : EG) —> T
such thatg(e~1) = ¢(e) 1 for all e € E(G). We denote the set of all-voltage
assignments of® by C1(G; I'). Let F be another finite graph and lgte C1(G;
Aut(F)), where AutF) is the automorphism group &f Now, we construct a graph
G x? F with the vertex se¥ (G x? F) = V(G) x V(F), and two verticegu1, v1)
and (u», vp) are adjacent irG x? F if either uqus € E(G) and vy = ¢ (u1u2)vy
or u; = up andvyvp € E(F) (see [7,10]). We calG x? F the F-bundle over G
associated with ¢ (or, simply agraph bundle) and the first coordinate projection
induces thésundle projection p? : G x? F — G. The graph$ andF are called the
base and thefibre of the graph bundl& x? F, respectively. Note that the ma®
maps vertices to vertices, but an image of an edge can be either an edge or a vertex. If
F = K,, the complement of the complete gragh of n vertices, then an F-bundle
overG is just ann-fold graph covering oveg. If ¢ (e) is the identity of Aut(F)for
alle € E(G), thenG x? F is just the cartesian product GfandF.

Let ¢ be an AutF)-voltage assignment oB. For eachy € Aut(F), let é(¢ )
denote the spanning subgraph of the drgerWhose directed edge setgbgl(y)
so that the dlgraph; is the edge-disjoint union of spanning subgraﬂr@ ») V€
Aut(F). LetV(G) = {u1,uz, ..., up}andV(F) = {vy, v2, ..., v,}. Let P(y) de-
note then x n permutation matrix associated withe Aut(F) corresponding to the
action of Aut(F)onV (F):its (i, j)-entry P(y);; = 1if y(v;) = v; andP(y);; =0
otherwise. Then for any, § € Aut(F), P(8y) = P(y)P(8). The tensor product of
matricesA ® B is considered as the matr& having the elemend;; replaced by
the matrixAb;;. Kwak and Leg8] expressed the adjacency matixG x?® F)ofa
graph bundles x? F as follows.

Theorem 1.

AG x? F) = ( Z AGgy) ® P(y)) + In ® A(F),

y €AUt(F)

where P(y) isthen x n permutation matrix associated with y corresponding to the
action of Aut(F) on V (F), and I,,, istheidentity matrix of order m = |V (G)]|.

Schwenk[11] studied relations between the characteristic polynomials of some
related graphs. Chae et 2] computed the characteristic polynomials &% (or
K>)-bundles over a graph. Kwak and LE& obtained a formula for the character-
istic polynomial of a graph bundle when its voltages lie in an abelian group. Miz-
uno and Sat§9] established an explicit decomposition formula for the characteristic
polynomial of a regular covering @ . In this paper, we compute the characteristic
polynomial of a graph bundle when its voltages lie in a dihedral group, as the first
attempt to compute the characteristic polynomial of a graph bundle having voltages
in a nonabelian group.
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In Section 2, we give a characterization of a circulant graph: a graph having
vertices is circulant if and only if its automorphism group contains a dihedral sub-
group of order 2nwhich acts vertex-transitively. In Section 3, we construct a block
diagonal matrix which is similar to the adjacent matrix of the graph bu6Gdie? F
to give an easy computation of its characteristic polynomial. Also, we construct some
weighted digraphs so that their adjacency matrices are the same as those of blocks
of the similar form of the adjacency matrik(G x¢ F), from which we compute
the characteristic polynomial of the graph bundle<? F in Section 4. Finally, we
derive formulas for the characteristic polynomials of a discrete torus and a discrete
Klein bottle. In fact, we do it for some generalized forms of them in Section 5.

2. Circulant graphs

An n x n matrix A is circulant if its entries satisfyA; ; = A; 1 ;41 for all i, j.
Clearly, any circulant matrix is determined by its first row.cikculant graph is a
graph whose vertices can be ordered so that its adjacency matrix is circulant. In this
section, we show that for any circulant grapbf n vertices, its automorphism group
Aut(F) contains a subgroup isomorphic to the dihedral groyp

Let S, denote the symmetric group orelements, say,2, ..., n. Leta = (1 2

- n—1 n) be ann-cycle and let

,_ @ me@ n—1 - (5 Byl ifnisodd
la me -1 & 5 if n is even

be a permutation in the symmetric groSp. Note that the permutatiors and b
generate the dihedral subgromp of S,,, where

Dn=<a,b ‘a” —1=05b%ab= ba_1>
={1,a,...,a"71, b, ba,...,ba”fl},

and their permutation matrices are

0 1 0 0 1
0 0 1 1
P@)=|: and P(b) = '
0 0 1 )
1 0 0 1 0
Let u = exp(2ni/n) and letx, = [1 uk w?* ... u®=DKT be a (column) vec-
tor in the complex-spaceC”. Then 1 u?, ..., u*~1 are distinct eigenvalues of the
permutation matrixP (a) and for eactk = 0,1, ...,n— 1, X is an eigenvector of

P (a) belonging to the eigenvalye*.
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Next two lemmas are elementary exercises.

Lemmal. For an n x n matrix A, (P(a)A),‘,j = A,‘_;,_]_’j, (AP(a)),-,j = A,"j_j_,
(P(b)A)i; = Au—iy1,j and (AP (D));,; = Ain—j+1 for all i, j, where A; ; denotes
the (i, j)-entry of the matrix A and all subscripts are reduced modulo n.

Lemma2. Foranyk =0,1,...,n— 1, the permutation matrix P (a*) has eigen-
vectors xo, X1, .. ., X,—1 belonging to n (not necessarily distinct) eigenvalues 1, uk,
..., p= Dk respectively.

Lemma3. Foranyk =0,1,...,n— 1, P(b)X; isan eigenvector of P(a) belong-
ing to an eigenvalue " *.

Proof. Clear, becaus® (a) P(b)x; = P(ba)xy = P(a~tb)xy = P(b)P(a) 1x; =
Pb) (" *xp) = p"*Pbyx. O

Theorem 2. The following statements are equivalent for a graph F of n vertices:

(1) Fiscirculant.

(2) The automorphism group Aut(F) contains a dihedral subgroup of order 2n
which acts on F vertex-transitively.

(3) The automorphism group Aut(F') contains a cyclic subgroup of order n which
acts on F vertex-transitively.

Proof. (1) < (3) is clear by definition, and2) = (3) is trivial. (3) = (2) comes
from the symmetry of the adjacency matrix

For example, the cycl€,, the complete graplk,, and its complemenk,, are
clearly circulant graphs. In fact, their automorphism groups(éxt= D, and
Aut(K,) = Aut(K,) = S, contains a dihedral subgroup,, which acts vertex-tran-
sitively.

Notes.

(i) Without loss of any generality, one can assume that the automorphism group
Aut(F) of any circulant graphr of n vertices contains the dihedral subgroup
D,, generated by the permutatioasndb.

(i) In the statements (2) and (3) in Theorem 2, the condition of vertex-transitivity
is necessary. For example,Hfis the complete bipartite grapkiz 7, Aut(F)
contains a subgroup which is isomorphic to the symmetric giugnd, the
group S7 contains a subgroup which is isomorphic to the dihedral grbug
because the elemenis= (1 2(3 45 6 9 andb = (1 2(3 7)(4 6) of Sy
generate the dihedral groupo. Of course, Aut(F)also contains a subgroup
which is isomorphic to the cyclic groupio. But, F = K3 7is not circulant.
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3. Similarity of an adjacency matrix

From now on, we assume thiathasn vertices 12, ..., n and its automorphism
group Au(F) contains the dihedral subgroup, = (a, b). And, we are interested
in the bundleG x? F, where¢ € C1(G; Aut(F)) has values only in the dihedral
subgroupD,,, i.e., the image o is contained in the subgroup,,. We say that such
a voltage assignmeuitis a D, -valued voltage assignment on G.

For anyD,,-valued voltage assignmegton G, we aim to find a matrix of block
form which is similar to the adjacency matrix(G x?® F) of the graph bundle
G x?F.

Theorem 3. Let F be a graph having n vertices such that Aut(F) contains a dihe-
dral subgroup D,. Then, for any D,-valued voltage assignment ¢ on G, the adja-
cency matrix of the graph bundle G x? F issimilar to

(-1
2
(AG) + rroytn) ® | B (A + Araylom) if nisodd,
=1
%(11—2)

(AG) + 2ro)in) ® | €D (A + Ar.yTom)
=1

n—1
69(2 ((—1)’<A(é(¢,ak)) + (—1)’<+1A(é(¢,hak)))

k=0
+ )‘(F,%n)lm> if niseven,
where
n—1 [LtkA(G((b’ak)) ,utkA(G((p,bak))
A[ =
k=0 [ u"RAG g par)) 1" TRA(G (4 k)
isof order 2m.

Proof. As the same notations given in Section 2, let exp(2mi/n) and X; =
1wk w2 . DT fork =0,1,...,n— 1. Recall that 1x2, ..., u* L are
distinct eigenvalues of the permutation matPiga) and foranyk = 0,1, ...,n — 1,
Xy is an eigenvector oP (a) belonging to the eigenvalye'. Let

[xo X1 PMB)X1 X2 Pb)x2 --- X1(-1) P(b)x%(n_l)]
if n is odd,

[Xo X1 P®)X1 X2 Pb)xa2 --- X%(n—Z) P(b)X%(n_z) X%n]
if n is even

M =
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Then the matridM is invertible of orden because the column vectosg X1, P(b)X1,
X2, P(b)X2,... of M are eigenvectors oP (a) belonging to distinct eigenvalues
1, pw, w1 w2, w2, ... respectively. Forany = 0,1, ...,n — 1, itfollows from
Lemmas 2 and 3 that

MtPm
Diag[ 1, 1, w2k, ..., 3Dk, 30D ] if n is odd
Diag [1, ke Dk =Dk 32k (—1)"] if n is even
where

. N )
Diag [1, P RGES LS (CEe Mé(n+l)k:|

denotes the diagonal matrix with diagonal entriegd =Dk, .. p30—Dk
%(n+1)k
" .
First,let n be odd. Then
P(b)M = [XO PbX1 X1 POXe Xe -+ POXy,_ 1) Xye_1 ]
=M1 28 - J2),
where
0 1
Jo = [1 0i| .
Hence, we get
M~LP(ba*y M
=M tPHPL)M
3(n—1)
— Diag [1’ =Lk, ”_’M%(n—l)li M%(n+l)k] 10 @ A
t=1
3(n—1)
2
0 Mtk
= 1 @ @ [M(”_t)k 0
=1
Moreover, the matrices, P(a), ..., P(a*~1) andA(F) are simultaneously diagon-
alizable because they are all diagonalizable and commute each other. It is already
known that 1, u, ..., /£~ 1 are distinct eigenvalues of the permutation maRix:)

of multiplicity 1 foranyk = 0,1, ..., n — 1. Itimplies that all eigenvectors @&f(a)
are those of A(F). Thereford/ ~1A(F)M is also a diagonal matrix and the com-
mutativity A(F)P(b) = P(b)A(F) implies that ifx is an eigenvector oA (F) be-
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longing to an eigenvalug, then P(b)x is also an eigenvector of (F) belonging
to the same eigenvalue. Therefore, fo= 1,2, ..., %(n — 1), xx and P(b)x; are
eigenvectors ofA(F) belonging to the same eigenvalue. ket x) denote the eigen-
value of A(F) to which the eigenvectors, and P (b)x; are belonging. Then

-1 o
M~A(F)M = Diag |:)»(F,0), AF, 1) AF,L)s -+ s )L(F,%(n—l))’ A(F,%(n—l))i| .
Now, by Theorem 1, the adjacency matrix of the graph bugtie? F is

n-1 n—1
MGx¢m=<Z}M6mMQ®th)+<2}M@¢WQ®P@JO

k=0 k=0
+1In ® A(F),

which is similar to

(In ® M)"YA(G x? F)(1,, ® M)

n—1
= Z {(A(G(¢7ak)) + A(G(¢7bak)))
k=0
%(”71) [LtkA(é((b’ak)) ,U;tkA(é((P’bak))
2]

=1 [ uTRAG 4 paky) W TTORA(G 4 k)

3(n—1)
+ 1 Aroln) & @ A, l2m
t=1

3(n—1)
= (AG) +2roln) ® | P Ar+rFnlam |
t=1
where
n=1[  p*AG 4ty W AG g paty) ]
A[ =
k=0 /,L(n_t)kA(G@,’bak)) /L(n_t)kA(G((P’ak))_

is a 2m x 2m matrix. Hence, i is odd, the adjacency matri(G x? F) is similar
to the matrix Of%(n + 1) blocks, the first block is of orden and all others are of
order 2m.

Next,let nbeeven. Then foranyk =0,1,...,n—1,

1n-2)

M~*P@M =1 wh o o —1)f
@M=1 @ 0 M(n,t)k & (—1)",
=1
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MIPbd M=M"1PPb)M
=M P MA® L@ I d(-1))
3(n—2)

0 Mtk
=l& Gel;mﬁm o || @D
=1

and

MTAF)M = Diag[ A(F,0)5 M(F,1)s AF,1)s -+

)“(F,%(n—z))’ )‘(F,%(n—z))’ K(F,%n):|'
Like as the case of odd, one can have

(In ® M)"YA(G x? F)(I,, ® M)
3(n—2)

=(AG) +rr.0ln) ® | P A+ rr.nlam)
=1

n—1
® (Z ((—1)kA(é(¢’ak)) 4 (_1)k+lA(é(¢,bak))) + )\,(F,%n)lm) .

k=0

Hence, ifn is even, the adjacency matrik(G x? F) is similar to the matrix of
%(n + 2) blocks, in which the first and the last blocks are of onsesind all others
are oforderz&. O

Corollary 1. If F =K, then Aut(K,) = S, contains a dihedral subgroup D,
which acts on K,, vertex-transitively. And, for any D,-valued voltage assignment
¢ on G, G x? K, isjust an n-fold covering over G and its adjacency matrix is
similar to

(-1
AG) @ (}) A, if n isodd,
t=1
(-2
AGe| P A
t=1

n—1
&Y (L AG 0 + (D AG g par)) i iseven,
k=0
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where
n—1 [LtkA(G((b’ak)) ,utkA(G((p,bak))
A[ =
k=0 [ "R A(G (g k) 1TRAG g ar))
isof order 2m.

As the last part of the section, we review how to find the eigenvalues of a circulant
graph F. Let F be a circulant graph having vertices and let its adjacency matrix
A(F) havelay a2 --- a,] as its first row under vertex ordering2, ..., n. Let
u = exp(2mi/n) as before. Then it is known [1] that the graplis vertex transitive
and the eigenvalues &fare

n
A = Za,’u(jfl)’, t=0,1,2,...,n—1,
j=1

which the eigenvector, = [1 ! p? .- =D belongs to.
Let./"(k) denote the set of vertices Bfadjacent to the vertek Then Fis regular
of degree|./ (k)| and A(r,0) = |4"(k)|. And, a vertexi is contained inA4"(n) if

and only if a vertex: — i is contained in/"(n) for anyi =1,2,...,n— 1, be-
causeA (F),,; = A(F)y—in = A(F)yn—;. Therefore, forany =1, ..., [3n], % =
[1 u' w? - pu=DTis an eigenvector df belonging to an eigenvalue bfr. )
and
MFEH = Z pl= = Z e
jen (L) jeN (n)
> (' 4 =Dty 4 (-1
je,,d*"(r:),jg[%(n—l)j
= > 2c0s?™ 4 (1) ifnisevenandn € N (n),

jerm.j<l3m-1)
> (/" + p0=70)
jen . j<L3m—1)

— Z 2 cos?i™ otherwise.

n

jer @) i<l (-1
For example, ifn is even, then the eigenvalues of the cyClg are A c,,0) =
. L e . 4 (n—2) :
2, )M(Cm%n) = —2 of multiplicity 1 and Zcoén—“, 2cosT, ..., 2cos™==% of multi-

plicity 2. If nis odd, then the eigenvalues of the cy€lgarex,.0) = 2 of multi-
plicity 1 and 2 cog®, 2 cos?®, ..., 2 cos”= " of multiplicity 2.
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4. Characteristic polynomials

The characteristic polynomial of a graghis, by definition, the characteristic
polynomial det./ — A(G)) of its adjacency matriX (G). We denote the character-
istic polynomial ofG by @(G; 1). We also denote the characteristic polynomial of
matrix Aby ®(A; 1). A zero of &(G; 1) is an eigenvalue dB.

The following comes from Theorem 3.

Theorem 4. Let F be a graph having n vertices such that Aut(F) contains a dihe-
dral subgroup D,,. Then for any D,,-valued voltage assignment ¢ on G, the charac-
teristic polynomial ®(G x? F; 1) of the graph bundie G x? F is

&(G x? F; )
n—1 o
B(G:h— hro) x [125 VDA A — Arsy)  ifnisodd,
3(n—2)

DGy A —Ar0) X [[27 " P (A — AFp))

x¢<szfNA@@Mp

)) if niseven,

+ (D AG b)) 13— e
where
nq{ WHRA(G 4 ar) uwﬂéwmn)}
A=
k=0 [ W OKAG (4 paty)  1TRA(G (4 t)
isof order 2m.

In the equation of the characteristic polynom@&(G x? F; 1) given in Theo-
rem 4, the term®(G; A — A(r,0)) is completely determined by the base grdph
But, the computations of all other terms might be complicate. Hence, to find more
convenient formulas for their computations, we construct some weighted digraphs
having the same characteristic polynomials as the remaining terms in the equation.

Let C denote the field of complex numbers, andebe a digraph. Awveight-
ed digraph is a pairD,, = (D, w), where w: E(D) — C is a function on the set
E (D) of directed edges dD. We call D the underlying digraph of D, andw the
weight function of D,,. Moreover, ifw (e 1) = w(e), the complex conjugate af(e),
for each edge € E(D), then we sayw is a symmetric weight function and D, a
symmetrically weighted digraph.

Given any weighted digrapbh,,, the adjacency matriX(D,,) = (a;;) of D, is
the square matrix of orde¥ (D)| defined by

_ JoWv)) ifvv; e E(D),
4ij = {0 otherwise,
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and its characteristic polynomial is that of its adjacency matrix. We shall denote the
characteristic polynomial ab,, by &(D,,; ).
For any D, -valued voltage assignmeuton G, define a new Z-voltage assign-
menty4 on G by
() = 1 if¢(e) =darforsomek =0,1,...,n—1,
P T 1-1  if ¢(e) = ba* forsomek =0,1,...,n—1
for e =u;u; € E(G). Then the voltage assignmedi; derives a double covering
G xV¢ 7, overG as follows:
V(G xV Z3) = {(ui. g) |ui € V(G). g € Z},
E(G xV* Z3) = {(ui, §)(u}, Yy(uiuj)g) lujuj € E(G), g € Za}.
We denote the double covering x¥¢ 7, simply by G¥#. Now, for any D,-val-
ued voltage assignmegt on G and for anyr =1, ..., L%(n -1, letw(¢):
E(G'#) — C be the weight function on the double coverig¢ defined by
_ w'k if g =1, and(¢(uju;) = ak or ba®),
a)r((f’)(e) - {M(n—t)k if g= —1, and(¢(uluj) — ak or bak),
wheree = (u;, g)(uj, Yo Wuiuj)g) € E(6w¢) andu = exp(2mi/n).
Define another weight functian_1(¢) : E(G) — C on the digraplG by
GO i gy = d,
O-1(P)uinj) = {(—1)’<+1 if ¢ (uine;) = ba*
for uinj € E(é)
The following lemma shows the adjacency matrices of these two weighted di-
graphs.

Lemma4.
(1) Foranyr=1.2,..., |3 —1)J,
A@fo’@)) = 4
as2m x 2m matricesunder vertexorder (11, 1), (u2, 1), ..., (um, 1), (u1, —1),
(u2, =1), ..., (uy, —1).
(2) When niseven,
n—1
ACos) =3 ((-1)"A(G(¢yak)) + (—1)’<+1A(G(¢,bak)))
k=0
asm x m matrices.

Proof. Note that both matrices in E(l) are of order 2:, while the matrices i2)
are of ordem. We prove the lemma by comparing entries of those matrices. For any
t=12,....3(n—DJandforany, j =1,2,....m,

Casel. Ifuu;e EG) and¢ (u;u ;) = a* for somek, then
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[AG Y o)l = 1" = A,

(G i = 0k

= [ArIm+im+j
[AGY ) limsj = 0= [Addims ).
[AGY? )t =0 = [Addmesi o
[AGw )i = (D
n—1
B [Z ((_1)kA(é<¢,ak>) + (—1)k+1A(é<¢,bak>)>} '
iJ

k=0

Case2. Ifuuj e E(G) and¢ (u;u ;) = ba* for somek, then
[AGY D lims) = 1 = [Addims .
(G i = 1% = (AL .
[A(G‘”(¢))1, j=0=1[Adi ],

[A(th(d)))]m-i-i,m-}—j =0= [At]m+i,m+j’
[AGo )iy = (1

n—1
= [Z (1A .00 + (—1)k+1A(é(¢,bak>>)} :
i,j

k=0

Case3. Ifuju; ¢ E(é), then
s
[A(G (¢))]t j = =0= [At]i,jv
[A(G‘”(¢))], i =0=[Alime).
[A(Gw (¢))]m+i,j =0= [At]m+i,j,
(G ntims = 0= [Addmime).
[A(Gu_y@)ij =0

n—1
= [Z (1A .00 + (—1)k+1A(é(¢,bak)>)}

k=0 iJj

It completes the proof. O

Now, the characteristic polynomial of the graph bundle<? F over G can be
derived from Lemma 4 and Theorem 4 as follows.
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Theorem 5. Let F be a graph having n vertices such that Aut(F) contains a dihe-
dral subgroup D,,. Then, for any D,,-valued voltage assignment ¢ on G, the charac-
teristic polynomial #(G x? F; 1) of the graph bundle G x¢ F is

D(G; A — A(F,0)

%(n—n(p (Gw

=1 ® (d))v A= )‘(F,t)) if nisodd,

&G x? Fi1) ={ o(G: x — A(F,0)

1
5(n— 2) Yo
12:1 (Gw @)’ A= A, t))
x @ (éwfl(d,); - A(F’%n) if n is even.

If F = K,, then for anyD,-valued voltage assignmegiton G, the graph bundle
G x? K, is just ann-fold covering overG. Note that the following corollary is in-
dependent from the characteristic polynomial of a regular coveritgaiitained by
Mizuno and Sato [9, Theorem 1], when the voltage group is a dihedral group.

Corollary 2. If F = K,,, then for any D,-valued voltage assignment ¢ on G, the
characteristic polynomial of a graph covering G x? K,, is

®(G: 1)) x 2(” YRG0 ifnisodd,
(G x? K, \) = (n 2
®(G: 2 x 12 cD(Gw @) M)
X @(wal@), A) if n iseven.

Next, we compute the characteristic polynomlézler @) A) of the weighted
dlgrath‘”"’

o () foranyr=1,2,..., Li(n —1)] andtD(Gw_l(q,), A) of the weighted
digrathw_l(¢). From now on, the conjugate of a complex numhés also denoted
by [u]™.

Lemma5. -

(1) Foranyr = 1,2, ..., |3(n — 1)| the weighted digraph G'/f“’((b) (GY, w,(¢))
is symmetrically weighted, and |o; (¢)(e)| = 1for all e € E(GY9).

(2) If niseven, then G,,_, 4 issymmetrically weighted and |w_1(¢)(e)| = 1 for all
e € E(Gw_l(¢)).

Proof. (1) Lete = (u;, g)(uj, Yy(u;u;)g) be an edge irE(é"’@. Then ¢ (4u;)
is eithera* or ba* for somek. First, letg (u;u ;) = a* for somek. Theng (u ju;) =
a" ™, Y (uiuj) = 1 and Y (u;u;) = 1. Hence, forany = 1,2, ..., [3(n — 1),
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01 (@) (i D(wj. 1) = p'* = p! =0 = [0 (@) (@, D DI
and
@ (@) (i, ~D)(uj, =1)=p "™ = pe=0=b
=0 (@) ((uj. 1), =1)T.

Secondly, let (u;u ;) = ba* for somek. Then ¢ (wu;) = ba* (becausdba’)~1
= ba"), Yg(uiu;) = —1 and vy (u,u;) = —1. Therefore, forany = 1,2, ..., |3
(n - 1)Ji

@ (@) ((ui, D(uj, —1)) = p'™* = pO=0% = [w, (¢)((u, —1)(u;, V)17,

and
@ (9) (i, =) (uj, 1)) = p % = ik = [w, () ((u, 1) (uz, —1))]".

Hence, the weighted digra;ﬁﬁsz) = (GY*, w, (¢)) is symmetrically weighted for

anyr=1,2,..., L%(n —1)]. And |w; ($)(e)| = 1 for all e € E(G¥#) becauseu!|
=1foralli e Z.

(2) Letnbe even. Foe = u;u; E(f}), if p(uiuj) = ak for somektheng (u ju;)
= a"*, which givesw_1(¢)(e 1) = (=1)" % = (=1)* = w_1(¢)(e). And, if ¢ (u;
uj) = bak for somek then¢ (uju;) = ba*, which givesw_1(¢)(e~1) = (—1)k*1
= w_1(¢)(e). Hence, the weighted digragﬁw_l((l,) is symmetrically weighted and
lw_1(¢)(e)] = Lforalle € E(G). O

A digraphf) is said to beinear if each indegree and each outdegree is equal to
1. For a weighted digrapP,,, we write

B(Dy; 1) = 2Pl 4 oDV DI oy ) (D).

Let 3,(5) denote the set of all linear subdigraph®f D with exactlyj vertices,
and«x (L) the number of components of a subdigrdphAn undirected grapl$ is
called abasic figure if each of its components is either a cycle or the complete graph
K». For an undirected grap, let #;(G) denote the set of all subgraphs®fvhich
are basic figures with vertices,« (S) the number of components of a subgréph
and®%(S) the set of cycles contained &

Kwak and Lee found the characteristic polynomial of a symmetrically weighted
digraph as follows.

Theorem 6 [8, Theorem 5]If G, isa symmetrically weighted digraph, then
¢jGo)= Y U J] loEH? [] @cCh+oCh),

5e4;(G) ecE(K2(S)) Ce%(S)

where w(CT) = HeeE(C+)w(€)-
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Now, one can calculate the characteristic polynom'aﬁzf@); A) fromLemmas
and Theorem 6.

Theorem 7. Let F be a graph having n vertices such that Aut(F) contains a di-
hedral subgroup D,,. Then, for any D,,-valued voltage assignment ¢ on a graph G
having m vertices, we have

2m
¢(éﬁf(¢);k)=xzm+2( Yoo (a)l(¢>)(C+)

+ (o (¢)(c+))l))x2’"f . 1

In particular, if ¢ (¢) isof order 2 for eache € E(éW), then

2m
2V Lo\ _ 4 2m _ 1\« (S)2lE(9)]
DG =243 [ Y (—1y92
J=1 \ 5en;(G?)

<[] w,<¢)(c+>) ABn,

Ce%(S)

¢(éwl<¢>;x>=xm+z< > T (w_1(¢>(c+>

j=1\Se#;(G) Ce%(S)

+ (w_1(¢)(c+))l))xmf

:)\.m—I—Z( Z (_1)/((5)2‘97(5” 1_[ w1(¢)(c+)) )Lm—j'
j=1 )

Se#,(G) Ce%(S)

5. Applications

The cycleC, is a typical example of a graph whose automorphism group is the
dihedral groupD,,. Therefore, for anyC,,-bundle over a grapfs one can apply our
method to compute its characteristic polynomial. In particular, one can compute the
characteristic polynomials of a discrete torus and a discrete Klein bottle.

Lemma6. Suppose that (Cy; w) isa symmetrically weighted digraph and for all
ec E(Cp), |w(e)| =1.Let V(Cy) = {u1, u2, ..., u,} and a)(C,j;) = ]_[l’-":_ll o (u;
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ui+1) XwUyuy). Then
B((Cpy; ) ) = D(Cs X) + 2 — (@(CH) + &(C;H ™).

In particular, if w(C;}) is a real number, then @((ém; ), A) =P(Cp; M) +2—
20 (CH), andif w(C;}) isa purely imaginary number, then @((Cp; w); 1) = ®(Cp;
2+ 2.

Proof. A basic figure ofC,, containing a cycle is only,, itself. Therefore, by
Theorem 6,

@((ém,w);x)=xm+2( PGS | (w(c+>

Jj=1\8¢%;(Cp) Ce%(S)

+ (w(C+))_1)>Am_/

="+ i: ( > (—1)K<S)) P

j=1 \S€%;(G),S#Cy,

— (@) + o).
And, by Sachs Theorem (see [3], Section 1.4) for an undirected graph,

m
D(Cpy; 1) =A" + Z ( Z (_1)K(S)2|%(S)) Am=J

j=1 \S€#;(C)

="+ ( > (—1)K<S>) A2,

j=1 \S€%;(G),5#Cn
Therefore, we ge®((C,,, w); A) = ®(Cpy; X) + 2 — (@(CH+oCchH™. O
From Theorem 5 and Lemma 6, we can have:

Theorem 8. For any Aut(C,)-voltage assignment ¢ on the cycle C,,, the charac-
teristic polynomial of the bundle C,, x? C, is

1, R
O(Cpi 2= 2) X T2y V@ (Culgy: 3 — 2c0522)
if n isodd,
1.0 -
PCon x? Coid) = § B(Ci 2= 2) x T127 @ (Contypy: 4 — 200522 )
 (B(Ci 2 +2)+ 2 = 2(0_1($)(C)))
if n iseven.
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A double covering over the cyclg,, is either a disjoint two copies @, or the
cycle Cy,, of length 2m. In either case, the characteristic polynomial

> 2t
¢ (Cmgf’(@; A—2 cosT)

in Theorem 8 can be computed by using Lemma 6.

As an example, consider a bundlgg x? Cg, where ¢is Aut(Cg)-voltage as-
signment on the cycl€p. Let V(Cg) ={1,2,...,8},and leta=(1 2 --- 8),
b= (1 82 73 6)(4 5 be the permutations in the symmetric groSg Then
Aut(Cg) = (a, b) = Dg, the dihedral group. Let thBg-voltage assignmeit on the
cycleCig be defined as in Fig. 1. Then the net voltage of directed ayge: ULU-
uguz - UgU1Q - Uil IS G (urou1) X ¢ (uguig) X - - - xPuiuz) = a*
a x b = a3. Therefore, the double coverirrgfg’ over the cycleCyg is a disjoint
two copies 0fC1g by the definition of the voltage assignmeyj. And, for each

component of the digrapt[iow , there exist exactly two linear subdigraphﬂif)%
which are isomorphic to the directed cycﬂ%. Let L1 and L2 be such two linear

subdigraphs of a component O‘ﬁo%, and L3 and L4 be those of the other com-
ponent. TherL.;! = L,, L3 = L4, and for anyr = 1,2, 3, one ofw, (¢)(L1) and
o ($)(Lp) is expff) and the other is exp&™). The same thing holds
for w; (¢)(L3) andw, (¢)(La). Thereforew, (¢)(L1) + w; () (L1) ™! = w,(¢)(L3) +
w(P)(L3) 1 = 20056—g‘ and w_1(¢)(C) = —1, by the definitions of the weight
functionsw;, (¢). Hence, we get by Lemma 6

x a2 x ba®x

3
¢ Ca: 1) — : T Ve 2m
®(C10 x? Cg; 1) =®(C10; A — 2) x Eqs (Clow, ()3 » — 2008~
X (@(C10: 2 +2) + 2 = 2(w-1(¢)(C)))

3
2t
—0(C10: 1~ 2) x [ | <45 (clo; A—2 cos%)

=1

6tm\?
+2—Zcos? X (D(Cro; 2 +2)+4).

Ug Uu10 Uy Uo us

ug U7 Ug Us Uq

Fig. 1. A cycleC1g with Dg-voltage assignment.
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In general, we can get:
Corollary 3. Abundle C,, x? C, over C,, having the net voltage ¢ (C;}) = a* for
somek =0,1,...,n— lisadiscretetorus. And, if niseven, thenitscharacteristic
polynomial is

&(Cyy x? Cpi V)

10
B(Cpz 2 — 2) x [12577 (<1> (cm; A 2cos%)
2
+2- 20032"’") X (D(Cp: )+ 2) + 4) if k isodd,
- 1,
B(Cp: 2 — 2) x [[2572 (q> (c,,,; A 2cosznﬂ)
2
+2- 2cosz"”‘) X D(Cps A+ 2) if k iseven.
If nisodd,
B 2t
B(Cpy x? Cpi N=D(Cp: A —2)x [] (<p (cm; A — 2cos—>
n
=1

2kt \ 2
+2— Zcos—n) .
n

If a bundleC,, x? C, has the net voltage (C,}) = ba* for somek =0, 1, .

n—1, then the double covermg,,ﬂ’ over Cy, is the cycleCs,,. And, for anyr =
1,2,.. |_2(n -1, wt(¢)(czm) =1, because for any edgg € E(Cm) the edge
(@, 1)(] Ve (i) € sz if and only if the edge(i, —1)(j, —¥¢(ij)) € sz and
wi (@A, 1), Y (ij)) x w(9) (i, =1)(j, =¥ (ij)) = 1 by the definition of weight
functionsw;, (¢). Therefore, a similar computation gives:

Corollary 4. A bundle C,, x? C, having the net voltage ¢ (C;\) = ba* for some
k=0,1,...,n— lisadiscreteKleinbottle. And, if niseven, thenitscharacteristic
polynomial is

&(Cyy x? Cpi V)

B(Cpp: h — 2) x 2(” 2 (cz,,,; ) — 2 cos?r
X ¢(Cm,x+2) if k isodd,

B(Coi 1 —2) x [I2 1 "0 (Can: 5 — 2cos25)
x (‘P(Cm,)x+2)+4) if k iseven.
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If nisodd,
b1 2t
D(Crp X? CpyA) = D(Cp; A — 2) X ]_[ @ <C2m; A — 2cos—> )
n
=1

For example, if a bundl€1g x? Cg has the net voltagﬁ(Cfo) = ba®, then the

double covenng‘l‘?’ overCigis the cycleCoo. And, foranyr = 1, 2, 3, w,(qﬁ)(C;ro)
=1, anda),l(qS)(ClO) = (—=1)* = 1. Therefore, by Lemma 6,

2t
¢
®(C10 x? Cg; 1) =B(C10; & — 2) X H¢ (Clow, o) b — 2 cos?)
X (P(C10; A +2) + 2 — 2(w-1(¢)(C)))
3
2t
—0(C10: 1~ 2) x [[® (Czo; A—2 cos—“)
=1 8
X ®(Cr0; A + 2).

And, the roots of®(C10; 2 —2) =0 are Q4 of multiplicity 1 and 2 cog + 2,
2cos + 2, 2cos + 2, Zcos + 2 of multiplicity 2. The roots of®(Cog; A —
2cos )_q')(Czo,A V2) = 0 are 2++/2,—2++/2 of multiplicity 1 and
Zcosm ++/2,2c082% + /2, ..., 2083 + +/2 of multiplicity 2. The roots of
D(Co0; A — 2 cosE )_ D(Cop; A) =0 are 2-2 of multiplicity 1 and 2 cosy,
Zcoslo, .. Zcos 5 of multiplicity 2. The roots of®(Cz0; A — 2c056“) = <1')(Cgo,
A+2) = O are 2— v2,-2 — /2 of multiplicity 1 and 2 cosly — ﬁ 2cos

V2, . 2cos — /2 of multiplicity 2. And, the roots ofp(C1g; A + 2) = 0 are

0,-4 of muIt|pI|C|ty 1 and 2cog — 2,2005 — 2,2005 — 2,2005 — 2 of
multiplicity 2. All of the above roots are the eigenvalues of the discrete Klein bottle
C1o x ¢ Csg.
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